Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration.
نویسندگان
چکیده
Discovery of molecular mechanisms and chemical compounds that enhance neuronal regeneration can lead to development of therapeutics to combat nervous system injuries and neurodegenerative diseases. By combining high-throughput microfluidics and femtosecond laser microsurgery, we demonstrate for the first time large-scale in vivo screens for identification of compounds that affect neurite regeneration. We performed thousands of microsurgeries at single-axon precision in the nematode Caenorhabditis elegans at a rate of 20 seconds per animal. Following surgeries, we exposed the animals to a hand-curated library of approximately one hundred small molecules and identified chemicals that significantly alter neurite regeneration. In particular, we found that the PKC kinase inhibitor staurosporine strongly modulates regeneration in a concentration- and neuronal type-specific manner. Two structurally unrelated PKC inhibitors produce similar effects. We further show that regeneration is significantly enhanced by the PKC activator prostratin.
منابع مشابه
A small molecule screen identifies in vivo modulators of peripheral nerve regeneration in zebrafish
Adult vertebrates have retained the ability to regenerate peripheral nerves after injury, although regeneration is frequently incomplete, often leading to functional impairments. Small molecule screens using whole organisms have high potential to identify biologically relevant targets, yet currently available assays for in vivo peripheral nerve regeneration are either very laborious and/or requ...
متن کاملGeneration of High Order Harmonics from H2+ Molecule Ion by Using Homogenous and Inhomogeneous Laser Fields
We solved one dimensional Schrodinger equation in a H2+ molecular environment by using 3 femtosecond homogeneous and nonhomogeneous laser fields. In homogeneous case, we found out that larger inter nuclear distances result in earlier ionization and also more instability in the wave packet. We deducted that the more the instability is, the more modulated the power spectrum will be. So, by choosi...
متن کاملHigh-throughput on-chip in vivo neural regeneration studies usingfemtosecond laser nano-surgery and microfluidics
In recent years, the advantages of using small invertebrate animals as model systems for human disease have become increasingly apparent and have resulted in three Nobel Prizes in medicine or chemistry during the last six years for studies conducted on the nematode Caenorhabditis elegans (C. elegans). The availability of a wide array of speciesspecific genetic techniques, along with the transpa...
متن کاملIn vivo femtosecond endosurgery: an intestinal epithelial regeneration-after-injury model.
Regeneration of the intestinal epithelium after injury or during pathogenesis is a dynamic cellular process critical for host immunity. However, current epithelial injury models provide poor spatial control, complicating the study of precise cellular responses. Here we developed endoscopic femtosecond-laser surgery capable of generating acute tissue injury. A side-view probe provides a convenie...
متن کاملFemtosecond laser surgery on a chip for nerve regeneration
Nanosurgery using femtosecond (fs) laser pulses permits precise ablation of cellular and subcellular structures with minimal collateral damage and without compromising the cellular viability. Its nano-scale precision and minimal invasiveness allow for studying the cellular organisation from interactions of subcellular organelles to biological pathways. Fs-laser nanosurgery is versatile enough t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 43 شماره
صفحات -
تاریخ انتشار 2010